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NOTE: This is a revised and expanded version of my original Article on Slide Rules 
With Hyperbolic Functions, and an updated version of my Listing of Slide Rules with 
Hyperbolic Scales. These first were published in The Journal of the Oughtred 
Society, Vol. 14, No. 1, 2005.   
The revised Article and Listing are shown as separate parts on this Web Site. The 
first part is the Article that immediately follows. Then the second part, the Listing of 
Slide Rules with Hyperbolic Scales, is found by returning to the main menu. 

 
Slide Rules with Hyperbolic Function Scales 

By William K. Robinson 
Introduction 

The introduction in late 1929 of the K&E 4093-3 Log Log Vector slide rule with 
hyperbolic scales should be considered a major milestone in slide rule history. This is not 
for the reason that one could now directly read the values of the hyperbolic functions for 
the first time on a slide rule - but more for the reason that one could now readily calculate 
the values of the complex hyperbolic functions. This new slide rule provided rapid 
solutions for complex expressions such as sinh (u + j θ)  = A /α  , in the Polar form ; or, 
sinh (u + j θ) = (x + j y), in the Cartesian form. These complex functions were being 
encountered more and more often in electrical engineering and other scientific 
applications of the time. Prior to the advent of this slide rule these complex hyperbolic 
equations were handled by a lengthy hand calculation routine using logarithms. We will 
see later in this Article how this breakthrough in slide rule design by Mendell P. 
Weinbach gave the engineer an immensely valuable and timesaving tool. Its importance 
really cannot be overstated. 
 Slide rules with hyperbolic function scales are of major interest to me because I 
used this type of slide rule in my first real job. This was as an engineer in the Vibration 
and Flutter Unit of Boeing in Seattle, beginning in the early summer of 1946. The job 
was full time in the summer and part time the rest of each year as I finished my 
University studies.  My work was mostly involved in solving the various flutter modes of 
the B-47 and B-52 bombers by matrix iteration. Other work was in the wind tunnel and in 
original research involving vector solutions of the flutter matrix. For one work 
assignment I designed a slide rule, six inches wide and two feet long, to sort out the 
various vibration modes coming from the print outs of our stress strain gauge tests.  
 My beginning job title in 1946 was “Vibration and Flutter Computer”. This was a 
perfect description as I really was a human computer. A large part of my early tasks 
included endless complex number calculations, done by hand on a desk calculator. These 
were lengthy iterations calculated to solve different versions of the flutter matrix. Many 
solutions took months of time to complete. About a year and a half after starting work I 
was promoted with the title of Engineer and relieved of what seemed like a never ending 
routine. 
  Overall this was a fascinating cutting edge job, and I often used my K&E 4083-3 
Log Log Duplex Vector slide rule. It was always at my side – and for the hundred or 
more Engineers around me their slide rules were always beside them in plain sight on 
their drafting table or desk. My K&E 4083-3 was an unusual model to have at the time as 
most engineers were trained in the use of and carried a K&E 4080-3, K&E 4081-3, or 
earlier model. (Remember, the Dietzgen and Pickett slide rules did not emerge in the 
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market until after WWII, and those with hyperbolic scales did not appear until about 
1948. So, all I recall seeing in my early years at school and work were K&E rules).  
  One should understand that in 1946 what we know today as calculators and 
computers were many years away into the future.  Also, it was a few years before IBM 
punch card calculating machines would arrive for our use in solving problems. For me 
these early years were the Golden Era of the slide rule. It was the main tool being used 
by us for building our very advanced swept-wing B-47 and B-52 bombers. And if one 
stopped to think about it, it had been the main tool used up to that time throughout the 
world in the design and construction of all achievements in science and engineering. 
(This is a long and impressive list including all buildings, bridges, dams, automobiles, 
trains, airplanes, manufacturing plants, laboratories, and etcetera). And, as we know, the 
slide rule would be used for many more years until gradually replaced by IBM machines, 
computers, and finally in the 1970’s by the hand calculator.  
 The resources we engineers had to work with in 1946 were: (1). the slide rule; (2). 
tables of logarithms; (3). tables of the different math functions and their logs; and, (4). 
various specialized tables, graphs, charts, and nomograms. These other sources (2)-(4) 
were consulted when more accuracy or other answers were needed that could not easily 
be provided by using the slide rule. Although the slide rule was by far the main tool we 
used, I feel these other sources should be mentioned in addition to the slide rule, as the 
availability of these for our use when needed was important.  
 We did have one advantage in 1946 that engineers before World War II did not 
have. This was the use of the newly introduced “desk calculating machines”. As they 
were just becoming available in 1946 it was rare to see these anywhere else at Boeing, or 
in fact in any office. However, we had three in our Vibration and Flutter Unit for the 
reason that our work was involved in very high level mathematics. And the machines 
were needed and there for one purpose - to save calculating time in completing the weeks 
and weeks of iterations needed to solve the flutter matrix. There were two Marchant’s 
and one Friden desk calculating machine in our Unit. We used them mainly for our 
complex number calculations. Also, these were used for regular multiplication and 
division when more accuracy was needed to solve our vibration, flutter, and stress 
analysis problems. (These machines would be called real clunkers by today’s standards, 
but were state of the art at the time). The desk calculators had no paper print outs, so 
every answer was copied by hand. In fact, every thing we calculated in those years had to 
be recorded by hand. What we know today as machines with print outs were years away.  
 I was very happy to have my K&E 4083-3 Log Log Duplex Vector slide rule to use 
due to the kind of advanced complex mathematical problems we encountered in my Unit.  
The two Slide rules with Hyperbolic Scales (the K&E 4093-3 in 1929; and the K&E 
4083-3 in 1939) had become important engineering tools by the time I went to work at 
Boeing. The reason for this is that hyperbolic functions are encountered in many areas by 
scientists, engineers, physicists and mathematicians. They are found in a very wide range 
of applications, from transmission lines to Einstein’s theory of relativity. Growth for their 
use had blossomed since the early decades of the 1900’s when industrial inventions 
employing formulas with hyperbolic functions were introduced. Continued expansion of 
electronic, and other scientific, applications of hyperbolic functions had further pushed 
the need for these slide rules forward.  
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A Short History of Hyperbolic Functions  
 It may be helpful to know something about the origins of hyperbolic functions to 
better understand our slide rules. This short history has been adopted mainly from 
Hyperbolic Functions (Smithsonian Mathematical Tables), by George F. Becker and C. 
E. Van Orstand, 1909 (Second reprint 1920).  I reviewed a few other references on the 
history of mathematics to confirm the important dates and people involved. Two of these 
that the reader would enjoy were;  e: The Story of a Number, by Eli Maor, 1994, and, An 
Imaginary Tale The Story of √-1, by Paul J. Nahin, 1998. 
 Hyperbolic functions were not introduced until around the late 1750’s. However, it 
was almost two hundred years earlier that the first and one of the most important 
applications of the functions now known as hyperbolic was made by Gerhard Kremer (or 
Krämer), 1512-1594. He was the Flemish geographer who was better known by his Latin 
name, Gerhardus Mercator. In 1569 he issued his Mercator’s Projection map. His 
projection resulted in the making of a map in which a straight line (the loxodrome) 
always made an equal angle with every meridian. This was a significant and major 
breakthrough in navigation. Its importance is evidenced by the fact that today all deep-sea 
navigation charts of the world have as their basis this projection. Mercator published his 
map without explanation, and it was left to others following him to discover that the 
formulas he used were linked to the hyperbolic functions. We will show the details of his 
formulas a little later in this Article.  
 The development of the mathematics of hyperbolic functions emerged in the 1700’s 
and 1800’s through the contributions of the following pioneers: 
 Vincenzo Riccati (1707-1775) is noted as the actual inventor of hyperbolic 
trigonometry. In 1757 he introduced the use of hyperbolic functions to obtain the roots of 
certain types of equations, particularly cubic equations. He adopted the notation Sh.φ and 
Ch.φ for the hyperbolic functions, and Sc.φ and Cc.φ for the circular ones.     
 Soon after, in 1759, Daviet de Foncenex (1734-1799) showed how to interchange 
circular and hyperbolic functions by using the √–1. This was made possible from the 
earlier contributions of other mathematicians. Such as De Moivre’s (1667-1754) classical 
equation of 1722, (cos x + i sin x)n  = (cos nx + i sin nx). This was followed in 1748 by 
the well known Euler’s Equation,  e± ix = (cos x ± i sin x). From these various efforts 
emerged the now familiar links between the circular and hyperbolic functions of:  
                    sin α = - i sinh iα, and cos α = cosh iα;  
  and the converse equations:  sinh β = - i sin iβ, and cosh β = cos iβ.  
Using these identities it was found that many substitutions could be readily made 
between the circular and hyperbolic functions.  
 We find that the first systematic development of hyperbolic functions was by 
Johann Heinrich Lambert (1728-1777).  In a 1768 paper he adopted the notation we use 
today; sinh u, cosh u, etc., and introduced what he called was the transcendent angle,  
using it in computation and in the construction of tables (later this was renamed the 
gudermannian). He is credited with popularizing the new hyperbolic trigonometry that 
modern science finds so useful. It has been said that Lambert did for hyperbolic functions 
what Leonard Euler (1707-1783) had done for circular functions.  
 Of historical interest is that it was Euler who introduced both the mathematical 
symbols “e” in 1728, and “i” for “√–1” in 1777. Printers were very happy to see this 
new “i” symbol as it made their job easier. The “√–1” had not only been an awkward 
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symbol for authors to write, but also difficult for the printers to insert in formulas and 
equations when typesetting them. Good examples of this can be found by looking at the 
formulas and equations above on the previous page. When writing these I used the 
symbol “i” instead of “√–1”. However, in all of these the symbol “√–1” should have 
been used. The reason for this is that the original writings by the various authors were all 
made before 1777. So, the “√–1” was the only symbol they, and the printers, then had 
available to enter in the formulas, and this was clumsy to use.  
 Later in 1832, Christoph Gudermann (1798-1852) published an important paper 
followed by extended tables of the hyperbolic functions. These were based on the 
solution of Mercator’s projections that had been found to be: λ = gd (m/a), and  (m/a) = 
ln tan [(π/4) + (λ/2)], where λ is the latitude, m is the projection point in latitude λ, and a 
is the radius of the Earth. The term “gd” is called the gudermannian after Gudermann, 
who introduced the term. The general equations for the gd follow those found for 
Mercator’s formulas. These are:  
  If,  x = ln tan [(π/4) + (θ/2)], then θ = gd x = the gudermannian of x. Of interest is 
that the gudermannian (gd) provides an important linkage between the circular and 
hyperbolic functions. These are the following:  
   tan gd x = sinh x;  sec gd x = cosh x;  and sin gd x =  tanh x.   
These formula links provided Gudermann the means to calculate his tables. Years later, 
in 1862, Cayley, in recognition of Gudermann’s significant contributions, proposed the 
name “gudermannian” for the angle that Lambert called “transcendent”. The name, 
gudermannian, remains today, and the formulas and tables of values are shown in many 
Mathematical and Engineering Handbooks.  
 
 Modern interest in hyperbolic functions was accelerated with the invention and 
commercialization of electricity. The widespread use of electricity started with the 
telegraph’s development in the mid 1850’s, and then was followed by the telephone, 
electric light, and the fast growing need of industry for power. Generating plants and 
transmission lines started to cross the American continent. The transmission of electrical 
power involves the application of hyperbolic functions.  
 A new academic degree called Electrical Engineer was the Universities’ answer to 
the need of the business world to handle electricity on a large scale. Impetus in the use of 
hyperbolic functions was increased in 1884 when the A.I.E.E. (The American Institute of 
Electrical Engineers) was founded. Starting in the late 1800’s more and more uses of 
hyperbolic functions were found as the uses of electricity expanded.  
 As the academic world took notice of this growth it was aided by the publication of 
text books and more extensive tables of hyperbolic functions. Some of the important 
English textbooks of the time were those of Prof. James McMahon, Hyperbolic Functions 
(Mathematical Monographs No. 4) (New York, 1896), and Prof. A. E. Kennelly, 
Hyperbolic Functions Applied to Electrical Engineering (Harvard, 1911). The more well 
known tables were: Becker and Van Orstrand, Hyperbolic Functions (Smithsonian 
Mathematical Tables) (Washington, D.C., 1909); A. E. Kennelly, Tables of Complex 
Hyperbolic and Circular Functions (Harvard, 1914); J. B. Dale, Five figure Tables of 
Mathematical Functions (Ainold, 1918};  K. Hayashi, Fünfstellige Tafeln der Kreis- und 
Hyperbel-funktionen (Berlin, 1930); E. Jahnlie and P. Emde, Funktionentafeln mit 
Formeln und Kurven (German and English, Leipzig, 1933).  
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 These were supplemented by books with nomograms, by which the complex 
hyperbolic functions could be found. Two of these were: A. E. Kennelly, Chart Atlas of 
Complex Hyperbolic and Circular Functions (Harvard, 1924); and, L. F. Woodruff, 
Complex Hyperbolic Function Charts, Elec. Eng., Vol. 54, 1935. The Woodruff charts 
covered the solution of 60-cycle lines up to 300 miles long.  
  In the early decades of the 1900’s, with the help of these tables and books, the 
applications of hyperbolic functions spread into every scientific discipline. Then the slide 
rule with hyperbolic scales appeared on the scene in 1929. We will see later in this article 
how important the slide rule became in solving and checking calculations involving both 
hyperbolic and complex hyperbolic functions. 
 
The Mathematics of Hyperbolic Functions 
 Hyperbolic functions can be derived mathematically in a number of ways. The three 
usual approaches are: (1) the development by means of graphics, (2) the solution by 
differential equation, and (3) the solution by infinite series. In the section that follows we 
will show how hyperbolic functions arise from each of these three sources. 
 We will begin with the graphical approach. The study of hyperbolic functions using 
this method probably began early in the history of the Calculus when it was noticed that 
the area under the circle was the integral ∫ √(a2 - x2), whereas the area under the hyperbola 
was the integral  ∫ √(x2 - a2). We note these two equations only differ by the signs of a and 
x.  As the area under the circle can been obtained by using trigonometric functions it was 
thought that there might be some similar functional relation based on the area under the 
hyperbola. In addition, when the axis was rotated ninety degrees the area under the 
hyperbola (y = b/x) had been found to be related to the natural logarithm function. In fact, 
the early name for natural logarithms was hyperbolic logarithms. Over time these led 
some to think that there might be a number of relations, perhaps involving the 
trigonometric functions, the logarithmic functions, and imaginary numbers – and, of 
course, these ideas opened new windows and new paths to explore.  
 As expected, using a graphical approach, an analogy was found between the 
circular (trigonometric) and hyperbolic functions. We develop this by starting first with 
the circle. Consider θ as an angle forming a circular sector. (See the shaded area MOP in 
Figure 1 below). Now the area C of this circular sector MOP is ½ θ . Then twice C (the 
area of the circular sector MOP) is equal to the number of circular radians in the measure 
of the angle θ. Or, angle θ = 2C.   
 For the unit circle x²+y² = 1, where OM = 1, we find that: sin θ = y/OM = y, and 
cos θ = x/OM = x.   
 We can now develop an analogous statement for the hyperbolic functions. A picture 
of the hyperbolic sector MOP is found in the shaded area of Figure 2 below. This graph is 
of the unit rectangular (equilateral) hyperbola of (x²–y²) = 1, or y = √(x2 - 1. 
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            Figure 1.                                                 Figure 2, 
 
In Figure 2, where OM =1, we draw a radius vector to a point P(x,y). Let H equal the 
area MOP. Then twice H (the area of the hyperbolic sector MOP) is equal to the number 
of hyperbolic radians in the measure of the angle u. Or, angle u = 2H.   
 Now, from Figure 2. we see that H, the area of the hyperbolic sector MOP, is the 
area of xOP less the area xMP; where area xOP= ½ xy,  and area xMP= ∫ y dx, (from 1 to 
x).   The mathematics to express H as twice the area MOP in terms of u follows: 
  u = 2H (twice the area of MOP) = 2 [ ½ xy – ∫ y dx, (from 1 to x) ]. 
  u = [ xy -  ∫ √(x2 -1) dx, (from 1 to x) ],  
  u = [ xy – x √( x2 -1) + ln (x + √(x2 - 1)) ], (from 1 to x), 
  u = [ xy – xy + ln (x + √(x2 - 1) ] = ln (x + √(x2 - 1).  
From this (x + √(x2 - 1) = eu ,  and since √(x2 - 1) = y,  we can write,   
(x + √(x2 - 1) =  (x + y) = eu, and further that [1 / (x + √(x2 - 1) =  (x - y) = e-u 
Then, by subtracting (x - y) = e-u  from (x + y) = eu  we obtain  y = (eu - e-u)/2. Further, by 
adding (x + y) = eu  to (x - y) = e-u  we obtain x = (eu + e-u)/2. These last two expressions 
are the familiar formulas that define sinh u and cosh u. So, for x and y we have: 
   y = sinh u = (eu - e-u)/2, and x = cosh u = (eu + e-u)/2 
 To complete our development of hyperbolic functions by the graphical approach we 
again refer to Figure 2. For the unit hyperbola we then proceed to write the following: 
sinh u = y/OM = y, and cosh u = x/OM = x. (Note these equations are similar to the 
circular functions, of sin θ = y, and cos θ = x).  
 As a last comment we need to point out that graphically it is not possible to draw 
the hyperbolic angle u in the same way that the circular angle θ is drawn. For u has no 
such reality. It is only exists as a function of the hyperbolic sector area H. It is important 
to avoid attempting to interpret u as an angle meeting at a point on the hyperbola.    
  
 The second illustration of how hyperbolic functions arise from mathematical 
sources is from the solution of a particular type of second order differential equations. 
For example, the solution of   
  dy²/dx² =  k² x,  is  x = (a⋅ekt  + b⋅e–kt). This equation is converted to a solution in 
hyperbolic functions by using the known identities: (a⋅ekt ) = a⋅(sinh kt + cosh kt), and, 
(b⋅e-kt ) = - b⋅(sinh kt + cosh kt). So, by subtraction  (a⋅e kt - b⋅e –kt ) = (a - b) sinh kt; and by 
addition  (a⋅e kt  +  b⋅e –kt ) = (a + b) cosh kt,    
   or,  x = A sinh kt + B cosh kt, where A = a - b and B = a + b   
An example employing this method of developing hyperbolic functions from this type of 
differential equation will be shown later in this Article. 
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 The third illustration of the derivation of hyperbolic functions is from the infinite 
series for ex using different values of x. It was Euler in his Introductio in Analysin 
Infinitorum (1748) who developed the infinite power series for ex from the limit formula 
lim (n →∞) (1+x/n)ⁿ ;  then, ex  =  lim (n →∞) (1+x/n)ⁿ  =  1 + x/1! + x2/2! +x3/3! + ….  
From this infinite power series we can obtain the series for cosh x and sinh x. If we add 
the power series for ex  to that of e-x  , and divide by 2 , we can derive the power series for 
cosh x as follows: 
 (ex + e-x) / 2 =  [(1 + x/1! + x2/2! + x3/3! +….) + (1 - x/1! + x2/2! – x3/3! +….)] / 2  
 So, (ex + e-x) / 2 = (1 + x2/2! + x4/4! …. + x2n/ 2n! + ….) = cosh x. 
Similarly, if we subtract the power series for e-x from that of  ex , and divide by 2, we can 
derive the power series for sinh x as follows: 
 (ex - e-x) / 2 =  [(1 + x/1! + x2/2! + x3/3! +….) - (1 - x/1! + x2/2! – x3/3! +….)] / 2  
 So, (ex - e-x) / 2 = (x/1! + x3/3! + x5/5! …. + x2n+1/ (2n+1)! + ….) = sinh x. 
Again, we have to thank Euler for his contributions to infinite series. 
 
An Interesting Graphical Depiction of Hyperbolic Functions 
  

 
 
  An interesting demonstration showing all of the six hyperbolic functions by 
graphics is found in Advanced Mathematics for Engineers, by Reddick and Miller (page 
89). We start by drawing a quadrant of a unit circle of radius OA =1. Then from point A 
to point P we construct a unit hyperbola (x²–y²) = 1. Then any point (x, y) on arc AP on 
the hyperbola is defined as x = OB and y = BP.  Next, we take point B as a center, and 
BP as a radius, and draw a circular arc from P to intersect at point T on the unit circle. 
Then we draw line BT which is tangent to the unit circle at point T.  This makes angle 
OTB a right angle. Also, since BP = BT, we know by definition that both BP and BT = y 
= sinh u.  
 Now taking the right triangle OTB we have OT = 1 and BT = sinh u. This means, 
OT2 + sinh2 = OB2, or 1 + sinh2 = OB2.  Now we know that 1 + sinh2 = cosh2, and also 
that the line OB = x. So, from this we have OB2= cosh2 = x2, and so cosh u = OB = x. 
Then from BP / OB we have sinh u / cosh u = tanh u. Taking similar right triangles we 
can show that BP / OB = AE / OA = tanh u, and since OA = 1 this gives AE = tanh u.  
 We have now developed three of the six hyperbolic functions; sinh u, cosh u, and 
tanh u. Looking at our Figure 2 we see right triangles OTD, OTC and OTB. From these 
triangles we can compare some similar sides that will allow us to find the last three 
hyperbolic functions sech u, csch u, and coth u.  
    From the similar triangles OTC and OTB we obtain sech u as follows: 
 OC/OT = OT/OB, and then OC = 1/OB = 1/ cosh u = sech u. 
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 From the similar triangles OTD and OTB we obtain csch u and coth u as follows:  
 DT/OT = OT/BT, and  then DT = 1/BT = 1/ sinh u = csch u; and  
 OD/OT = OB/BT, and  OD = OB/BT = cosh u / sinh u = coth u. 
We can now summarize the graphical representations of the six hyperbolic functions: 
BP = sinh u,  OB = cosh u,  AE = tanh u,  OC = sech u,  DT = csch u, and OD = coth u.  
This is a remarkable development of these functions. However, there is still one more 
unusual function of u to show. This is the gudermannian of u that is found from the angle 
AOT. So,  gd u = / AOT.  
 While this graphical demonstration is a unique way of finding all of the hyperbolic 
functions, and also gd u, it is not a good way to obtain their values. The reason being that 
for each choice of the point P(x,y) one is required to complete a new construction of the 
figure. As there are an infinite number of choices for point P this graphical approach 
requiring multiple constructions would be not be practical to use for finding these values.  
 
Two classic applications involving hyperbolic functions 
 There are literally hundreds of applications of hyperbolic functions found 
throughout all scientific disciplines. Many of these, I am sure, are familiar to the reader. 
Over the years I have collected many interesting examples of these applications. 
Following are two classic examples that are my favorites. They are included here for 
historical value as one may have heard about them but rarely has had a chance to see 
them developed.  
 The first example is taken from Transmission Line Theory. In the late 1800’s it was 
the urgent need for sending electricity over long transmission lines that heralded the 
modern use of hyperbolic functions. The second example is found in Einstein’s, Special 
Theory of Relativity regarding the discussion of the transformation equations relating to 
different frames of reference. These two are excellent illustrations of the application of 
hyperbolic functions.  
  First to be discussed is Long Transmission Line Theory. Contrary to what might be 
supposed, it did not develop because these lines form a Catenary curve as they hang 
between poles. (You will recall the formula for the Catenary, where y = a cosh x/a, is the 
hyperbolic solution). Instead, it arose from the second order differential equations that 
describe the voltage and the current that flows in these lines. The following example 
showing important steps in the development of the theory is taken from pages 94-101 of 
the book Power System Analysis, by W. D. Stevenson, Jr. (McGraw-Hill, 1955).  
 The second order differential equations for the voltage (V) and the current (I) are:  
dV²/dx² = γ2⋅V, and dI²/dx² = γ2⋅ I; where γ is called the propagation constant. (You will 
note these formulas are of the same general form as the differential equation discussed 
earlier in this Article). The solution of these by integrating twice is:  
 V = (A1⋅eγx + A2⋅e-γx), and I = (1/Zc)⋅(A1⋅eγx + A2⋅e-γx); where A1, A2, and Zc (called 
the characteristic impedance) are constants. By using the boundary conditions at the 
receiving end of the line A1 and A2 may be evaluated as follows: 
  A1 = (VR + IR⋅ Zc) / 2, and A2  = (VR - IR⋅ Zc) / 2.   
If we substitute the equations for A1 and A2 into those for V and I we obtain: 
 V = {[(VR + IR⋅ Zc)⋅eγx / 2] + [(VR - IR⋅ Zc)⋅e-γx / 2]},  
 And,  I = {[(VR/Zc + IR⋅)⋅eγx / 2] - [(VR/Zc - IR)⋅e-γx / 2]}, 
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 By rearranging terms in V and I more convenient forms of the equations for computing 
the voltage and current of a power line are found by using hyperbolic functions. We then 
have: V = (VR⋅ cosh γx ) + (IR⋅Zc⋅ sinh γx ),   and I =  (IR⋅ cosh γx ) + (VR/Zc⋅ sinh γx ) 
Now, these last equations give the voltage and current anywhere along the line. If we let  
x = l we can obtain the voltage and current at the sending end, as follows 
   VS = (VR⋅ cosh γl ) + (IR⋅Zc⋅ sinh γl ),   and IS =  (IR⋅ cosh γl ) + (VR/Zc⋅ sinh γl ) 
Our work is now finished as these last expressions for VS and IS are the fundamental 
equations of a transmission line.  However, they are not as simple as they look as the 
expression γl is usually complex. This also makes the hyperbolic functions complex, and 
solutions cannot easily be found using published tables. However, our slide rule with 
hyperbolic functions can be used to quickly find answers to them.  
  
 The second example to be discussed arises from Einstein’s, Special Theory of 
Relativity. The hyperbolic functions figure prominently in his theory. They are found in 
the transformation equations relating to different frames of reference. (This example is 
taken from pages 81-84 of the book, Used Math, by C. E. Swartz (Prentice-Hall, 1973). 
 The transformation equations relating to x and t to x’ and t’are 
   x’ = (x – vt) / (√ 1 – (v2/c2))   and   t’ = (t – ( xv/ c2)) / (√ 1 – (v2/c2))    
The coordinates x’ and t’ are for a reference frame moving with a velocity v with respect 
to the frame specifying x and t. There is an invariant interval that has the same value for 
all frames moving at constant velocity (in the x direction) with respect to each other, so: 
    x’2 - c2t’2 = x2 - c2t2 
For a particular value of this interval, the relationship between x and t in any frame is 
hyperbolic. For instance, suppose that we choose a moment in the (x’, t’) frame when 
t’= 0 and x’= 1. Then in the (x, t) frame the relationship between x and t must be such that  
1= x2 - c2t2. The values for x and t lie along a hyperbola where x = cosh u and ct = sinh u. 
 These hyperbolic curves are best seen in a graphical form called the Minkowski 
diagram and first used by him in 1908. It was Minkowski who first proposed the notion 
of four-dimensional space-time. The concept was soon adopted by Einstein and later used 
by him to develop his crowning achievement the general theory of relativity. Thanks to 
Minkowski, the relationships among the hyperbolic functions and the use of his diagram 
provide an easy derivation of the relativistic formula for addition of velocities. Here a 
point on the hyperbola can be given in terms of the parameter u, where 
  x = cosh u, and ct = sinh u;  v = dx/dt = sinh u du/dt,  and dt/du = cosh u / c. 
Therefore, the velocity of the moving frame is v = c tanh u.  From within the prime frame 
of the velocity the double primed frame is v’ = c tanh u.  The velocity of the double 
primed frame as seen in the stationary frame is not  v + v’ , but is given by  
   v’’ = c tanh (u + w) = c  sinh (u + w) / cosh (u + w)      
   = c (sinh u  cosh w + cosh u  sinh w) / (cosh u  cosh w + sinh u  sinh w) 
If we divide numerator and denominator by cosh u  cosh w  we obtain 
   v’’ = c( tanh u + tanh w) / ( 1 + tanh u  tanh w) 
so,   v’’ = (v + v’) / (( 1 + (v v’/ c2), and this is the addition law for velocities.  
 We salute Einstein, and his Special Theory of Relativity, and Minkowski for a great 
display of the use of hyperbolic functions. Again, instead of using tables, one would find 
that the answers these equations could best be solved using our hyperbolic slide rule.  
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History of Slide Rules with Log Log and Hyperbolic Function Scales  
 In the early decades of the 1900’s, as the expansion of hyperbolic applications 
accelerated, it seemed only a matter of time until the slide rule emerged as an aid for the 
Electrical Engineer.  In JOS Vol. 1, No. 1, there is a paper by Bob Otnes on the Log Log 
Scales (The comments that follow are based on information taken from his paper).  
 In 1815, Peter M. Roget, MD, invented the log log Scales. Then, almost 100 years 
were to elapse before log log slide rules would come into regular use. About 1906, both 
John Davis & Son and A.W. Faber introduced slide rules with log log scales, and K&E 
followed in 1909. The importance of log log (LL) scales is that they are useful in 
evaluating exponential expressions such as xy (i.e. like 7.12.3 and e1.83).  Being able to 
evaluate the powers of e± y allows the calculation of hyperbolic functions. So slide rules 
with LL scales were the forerunners of the slide rules that came later with scales of 
hyperbolic functions. Before slide rules with LL scales were introduced the only practical 
means to evaluate exponential functions were by using published books with log tables. 
Or, by calculating e± y from the ordinary L scale. Now, having for use only the log tables 
or the L scale can often involve tedious calculations with the possibility of errors.  So 
these early slide rules with their LL scales saved a lot of time and labor. Equally 
important is that they provided a ready means to check the calculations that had been 
made by hand from the published log tables. 

The steps of the mathematical theory behind the LL scales are this:  
Start with the expression xy.  Its log is,  log xy = y log x 

   Then the log of this is,   log (y log x)  =  log y  +  log (log x). 
So we have a resulting expression that becomes one of addition when these log log steps 
are calculated.  Now, this equation can be used to apply to any logarithmic base “a” that 
we choose. Roget used base a = 10.  John Davis & Son used a = 2.0, and A.W. Faber 
used a = 3.08.  In 1909 K&E introduced their Log Log slide rule with a = e = 2.71828…..   
Many problems in science and engineering involve e. As a result of K&E’s development 
of the LL scales with e as a base, their design became the industry standard - and this 
base was used on most LL slide rules that came later.  An excellent article on the “Theory 
Underlying Construction of the “ LL” Scales” is found in the Dietzgen Manual for Model 
No. 1732, the Decimal Trig Type Log Log slide rule (pages 92-94). 

One of the earliest examples I have seen of the calculation of hyperbolic functions 
using the LL scales is the solution of the Catenary curve on page 6 of the K&E 4092 
manual ( 1914). The table on that page shows the calculations for the Catenary using 
nine different examples of e± x/a.  We see clearly from this table that one does not need a 
slide rule with hyperbolic scales to obtain the values for these functions. In fact, many 
well known slide rules that do not have hyperbolic scales have a section in their manuals 
on how to obtain hyperbolic function values. Manual examples of this are the 
VERSALOG (pages 29-30), and the DECI-LON (pages 107-108) - and all of the Log 
Log Trig manuals that I have in my files from the various manufacturers (K&E, 
Dietzgen, Pickett, and Post) have sections on obtaining the powers of “e”.  However, it is 
somewhat inconvenient using the LL scales on these rules for calculating the hyperbolic 
functions, as to do this takes four separate steps. For example, to calculate Cosh x/a one 
has to first obtain the values for e+x/a and e-x/a, then add them together and divide the 
result by 2. For Sinh x/a you subtract e-x/a from e+x/a, and divide the result by 2. 
Complicating this process is the fact that to keep track of the calculations you usually 



 11 

have to record them by pencil and paper. These multiple steps using the LL scales are 
just not as convenient as having a slide rule with hyperbolic scales to use for the direct 
reading of the hyperbolic function values – and to use for calculations involving these 
values. 
 I am indebted to Rodger Shepherd, for information on the early history of slide 
rules with scales that allowed the reading of hyperbolic function values. In JOS Vol.4, 
No. 2, he gave a description of an early design by F. Blanc in 1890. It did not have 
hyperbolic scales, but it did have marks on it so when the conversion to base “e” was 
made one could read off the Sinh and Cosh values. Unfortunately no picture of this slide 
rule exists. Rodger also sent me a copy of a February 15, 1921 paper, by J. St.Vincent 
Pletts, that was published in the Proceedings of The Physical Society of London. Its title 
was Some Slide Rule Improvements, and seems to be the first to show an actual picture of 
a slide rule with hyperbolic scales. 
 Next we find the submission of a Patent application on May 12, 1921 by Albert F. 
Puchstein. He was a professor at Ohio State University. The title was “Device For 
Making Vector Calculations”, and included layouts of hyperbolic scales. In the patent 
application Puchstein says; “…….my device is of such a nature that calculations can be 
readily made as to ….. hyperbolic sines, cosines, tangents, etcetera, of vectors”. The 
patent was approved three years later on March 25, 1924 (U.S. No. 1,487,805). Shortly 
after this Puchstein discussed his slide rule design with K&E, but nothing happened as 
K&E felt then that there was no market for such a rule.  
 There may have been other articles published in these early years by other authors, 
but if written they seem to be lost. So, we find that none of these early designs of 
hyperbolic slide rules were ever manufactured or sold to the public.       
 The history of slide rules with hyperbolic scales that were actually sold to the public 
begins with a copyrighted paper published in May 1928 by Mendell P. Weinbach. He was 
a Professor at the University of Missouri-Columbia. This was titled, “Vector Calculating 
Devices” (A.I.E.E. Journal, V.47, May 1928, pages 336-40). In this paper he showed a 
picture of “The Vector Slide Rule”. Professor Weinbach was mainly responsible for the 
design of the K&E 4093-3, Log Log Vector slide rule, with hyperbolic scales. He also 
was the sole contributor to the drafting of its manual. The K&E 4093-3 was introduced in 
late 1929. It was first listed for sale in the 1930 K&E catalog. The rule’s price was 
$16.00.  The 4093-3s version, with a better leather case, was $16.85.   
 Ten years later, in 1939, K&E introduced a second Vector slide rule; the K&E 
4083-3 Log Log Duplex Vector slide rule. This was an improvement over the earlier 
4093-3 model. Again, Professor Weinbach was solely responsible for drafting the new 
manual. A complete history of “Mendell Penco Weinbach and the K&E Log Log Vector 
Slide Rules”, the K&E 4093 and K&E 4083, may be found in my March 2008 Article in 
the Oughtred Society’s JOS Plus web site:   http://www.oughtred.org/josplus.shtml 

Referring back to 1929 and the K&E 4093-3, the next hyperbolic slide rule 
introduced after it was the Hemmi Model 153. This was introduced in 1933 in Japan. The 
Patent Application was submitted by Hasashi Okura in Japan on January 14, 1932, and in 
the U.S. on March 20, 1933 (The U.S. Patent No. 2,079,464 was granted on May 4, 
1937). This rule did not have hyperbolic scales but instead had Gudermannian scales for 
obtaining Hyperbolic Functions (spelled Gudermanian by Hemmi). Its 1934 manual 
describes this model as the Electrical Engineer’s Universal Duplex Slide Rule With 
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Patent Vector Scale, Gudermanian Scale and Log Log Scales. This is a very usable rule 
and is one of the most uniquely designed of all the hyperbolic slide rules. (As an 
interesting side note, US Patent No. 2,086,502 was approved later in 1937. This was 
issued to Okura on behalf of Hemmi and K&E. It was for “Gudermannian Scales for 
Hyperbolic Functions”. Although the patent was approved in 1937, K&E never 
introduced a slide rule with “Gudermannian Scales”). 
 After the introduction in 1933 of the Hemmi Model 153 about another fifteen years 
passed before the Dietzgen Model 1735 and the Pickett & Eckel Model 4 arrived on the 
scene. Their manuals are both dated with a 1948 Copyright. The European makers were 
much slower in introducing slide rules with hyperbolic scales. The following dates are 
estimates of the earliest dates their slide rules were introduced:  

• The Aristo HyperboLog 971 appears to be the first marketed in Europe in 1954. 
• The Blundell JV56 Multi-Log Vector Duplex was second in 1957.  
• About 1962, the Graphoplex 691a Neperlog Hyperbolic, appeared.  
• The Faber-Castell 2/84 Mathema made its debut in 1966.  
• The date for the Reiss 3227, made in East Germany, also appears to be 1966. 
• The larger Aristo, the HyperLog 0972, followed in 1969. 

These slide rules were known as “high-end ones”, as when introduced they usually were 
the most expensive and had the most scales of slide rules in a Company’s product line.   
 Of interest is the fact that the first appearance (1954) of the hyperbolic slide rule in 
Europe was 25 years after its introduction by K&E in the USA. During this period only 
limited shipments of slide rules occurred from the European and Japanese manufacturers 
to the U.S.A. Much of this delay was due to international tensions prior to World War II. 
This was then followed by more years during WWII, and after the War with the 
rebuilding of Europe and Japan. As a result, K&E had a virtual monopoly on hyperbolic 
slide rule marketing in the United States for about 19 years. This continued from 1929 
until around 1948 when Dietzgen and Pickett introduced their hyperbolic slide rules.  
 When we look at the world-wide sales of all types of slide rules it does not appear 
that there was ever any real penetration by K&E, or other U.S.A. slide rule makers, into 
the European or Japanese markets. The same can be said about the European 
manufacturers regarding the U.S.A. market. Hemmi did have some limited success 
selling its own models in the U.S.A., before and after WW II; and it did fairly well after 
the War with its arrangement with Post in the 1950’s. Also, some European cross 
production of U.S.A slide rule names occurred at various times. But for all practical 
purposes, this was never on a significant scale. The U.S.A. manufacturers, K&E, 
Dietzgen, and Pickett, remained dominant throughout all of the years in the U.S.A. 
market.  Hemmi in Japan, and the European manufacturers, Dennert & Pape, Nestler, 
Faber-Castell, Blundel, and others remained dominant in Europe.  
 To my knowledge, neither Dennert & Pape, nor Nestler ever manufactured a slide 
rule with hyperbolic scales under their well known names. Although D&P started using 
the product name Aristo in 1936, it was not until 1954 that the Aristo HyperboLog 971 
was marketed. Also, the Faber-Castell Mathema 2/84 did not come on the scene until 
about 1966. I have no explanation as to why the European makers were so late 
introducing slide rules with hyperbolic scales. This is a similar puzzle as to why the U.S. 
Manufacturers never adopted the P scale that had been introduced in 1935 by F-C into the 
System Darmstadt configuration. I had thought the reasons for these omissions might be 
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due to patent infringement concerns. However, John Mosand, indicated to me that patent 
worries were not a problem. John says, “Clearly, there must have been conservative 
attitudes on both sides of the Atlantic”. Maybe some of you Readers could offer other 
reasons for these omissions, both for Europe and the U.S.A. 
 In the later years of slide rule production we find many names of hyperbolic 
Chinese slide rules on the list. In spite of what seems to be a large number of these that 
were manufactured it appears few ever found their way to Europe or the U.S.A.  
 The history of hyperbolic slide rules in the U.S.S.R. is surprising. A few years ago 
Andrew Davie referred me to a friend of his who was an expert in Russian slide rules. His 
name is Sergei Frolov, an engineer and computer expert who had a web site showing 
Russian slide rules. Sergei informed me that he had never seen a Russian slide rule with 
hyperbolic scales.  This appears to be the case, as to date I have not seen one either.   
 
Some Practical Pointers About Slide Rules With Hyperbolic Scales. 
 The length of the scales on most of the rules is 25 cm or 10 inches. I found in 
actually measuring some of them that the manufacturers were not always correct in 
reporting the length of the scales. So in my listing I left the lengths as described rather 
than making changes. Both Hemmi and K&E produced larger 20 inch (50 cm) versions 
of some of their hyperbolic slide rules. I found only two pocket versions: the Flying Fish 
1200, and the Pickett N4p in identical T and ES versions. One of the rarest is the Eckel 
Engineer’s Log Log Circular slide rule (size about 8 inches). It is the only circular slide 
rule known with hyperbolic scales. This was made by Eckel after he left Pickett.   
 Most of the rules have designated hyperbolic Sinh and Tanh scales. (There are only 
a few exceptions. These include the Hemmi 153, and the similar rules from other makers, 
that have Gudermannian scales for obtaining hyperbolic functions). Usually the Sinh and 
Tanh scales are shown as Sh1, Sh2 and Th. Almost always there are two hyperbolic Sh 
scales to give a wider range for accuracy. Only a few slide rules have Cosh scales.  
 The ranges of the Hyperbolic Scales usually are: Sh1 from 0.1 to 0.882; Sh2 from 
0.882 to 3.0; and Th from 0.1 to 3.0. If a Cosh scale is included on the rule the range of 
values is usually Ch from 0.1 to 3.0. For those rules that do not have a Ch scale its value 
is calculated by use of the formula Ch = Sh / Th.  
 The hyperbolic scales are found in different positions on the slide rules. On some all 
of the scales are positioned on the top or on the bottom sections of the stock. On some 
rules the scales are split between the top and bottom stock sections. One notable 
exception is the Pickett & Eckel Model 4 rule with its hyperbolic scales on the slide and 
not the body.  
 Not all hyperbolic slide rules are created equal. We find the layout of the scales on 
the various slide rules can be important for ease of operation. Also, accuracy can suffer if 
multiple alignments of the scales and the cursor hairline are involved in the steps when 
calculations are made. It is obvious that accuracy could be lost if you have to turn the rule 
over to read a result, or rely on the hairline on the cursor to read from the top scales to the 
bottom scales on the stock. To minimize concern about alignment of the hairline with the 
scales an ideal slide rule design would have the D, DI, Sh1, Sh2 and Th scales together 
on the bottom of the stock, with these adjacent to C and CI scales on the slide. The CI 
and DI scales are required for calculating the reciprocal hyperbolic functions.  The need 
for this layout is also obvious when Ch is calculated. The reason for this is that to obtain 
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Ch you first have to find the Sh and Th values, and then calculate Ch = Sh/Th. Of course 
this step is not needed if a Ch scale is included. However, as only a small number of the 
rules on the list have a Ch scale, most of the time the Ch value will have to be calculated 
using the Sh and Th amounts.  
 As I worked on my listing showing the details of the scales and gauge marks on the 
various hyperbolic slide rules it was a surprise to find that most were poorly designed. 
This was where the hyperbolic scales were not placed close to a set of C/D, and CI or DI 
scales. Also, poor layouts were found where the Sh and Th scales were separated from 
top to bottom. This meant that the cursor hairline and the top and bottom scales had to be 
perfectly aligned in order to read the most accurate values.  
 There are many poor designs by the various Manufacturers. Examples are the K&E 
4093-3, and an early version of the K&E 4083-3.  These have no C scale on the same side 
as the hyperbolic scales. To read the Ch value, after getting the Th and Sh values, the 
manual instructions say to turn the rule over and read the answer at the cursor hairline on 
the C scale. K&E should have given other instructions for these rules for there is a much 
better alternative way to obtain a more accurate Ch value. All you need to do, before 
starting work to find any of the hyperbolic functions, is to remove the slide, turn it over 
and reinsert it. This places the C scale on the opposite side next to the D scale. Also, you 
obtain the added advantage of the use of the CI scale for the reading of the Csch, Sech, 
and Coth values. The accuracy for these slide rules (and others with similar scale layouts) 
is greatly improved with this little trick. With the slide reversed on these rules the layout 
becomes almost ideal, and the ability to handle more accurate calculations involving 
hyperbolic functions is greatly enhanced. 
 Two slide rules are almost at a tie for ease of use in finding the Ch value. These are 
the Hemmi No. 153 and the Pickett & Eckel Model 4. The Hemmi has gudermannian 
scales in its design. With the slide reversed on this slide rule you can read off the Sh and 
Th values on the T and Q scales with one setting on the Gθ scale. Then sliding the 
hairline to the Sh value on the Q scale you can read the Ch value on the Q’ scale.  The 
Pickett & Eckel Model 4 has the hyperbolic scales on the slide. You do not have to 
reverse the slide on this rule to find Ch. You simply align the C and D scales. Then set 
the cursor line on the Sinh scale value and slide the Tanh scale under the cursor line. The 
answer for Ch will be on the D scale under 1 index on the C scale.   
 On the other slide rules the manual instructions for calculating Ch, and the 
reciprocal values may vary depending on the scale layout of the particular rule. 
Unfortunately, many of the instructions given in these manuals are poor and only 
sketchy. The best hyperbolic functions instruction manuals I have found are those for the 
Dietzgen No. 1725 and No. 1735 rules. The instructions are almost identical for these two 
manuals, and in my research exceed any manual produced by others.  
 The usual procedure to find a hyperbolic function value is to start by moving the 
hairline to the value on the appropriate hyperbolic scale, and then read the answer on the 
C or D or CI scale. We will use the K&E 4083-3 (with the slide turned over and 
reinserted so that we will have the use of an adjacent C scale) for showing examples. This 
K&E model is used here because it is found in more numbers than other Company’s 
models. However, the following procedures may be used on almost all makes of rules 
other than gudermannian ones.  
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 For our examples we will use the value u = 0.4 and show how to find all of the 
hyperbolic functions starting with Sinh 0.4 = ?. With this slide rule you move the hairline 
to 0.4 on the Sh1 scale and then read 0.411 under the hairline on the D scale. (Note that 
radians are used, not degrees, for entering the values on the hyperbolic scales). At the 
same time, if the C and D scales are aligned, you can read Csch 0.4 = 2.43 on the CI scale 
under the hairline. Similarly, we find Tanh 0.4 to read 0.380 under the hairline on the D 
scale. At same time you can read Coth 0.4 = 2.63 on the CI scale under the hairline. This 
slide rule does not have a Cosh scale. To find Cosh 0.4 move the hairline to 0.4 on the Th 
scale, slide the index 1 on the left side of the C scale to under the hairline, move the 
hairline to 0.4 on the Sh1 scale, and under the hairline read Cosh 0.4 = 1.08 on the C 
scale. At the same time you can read Sech 0.4 = 0.925 on the CI scale under the hairline. 
 Since the ranges of the scales are limited they cannot be used to find answers for all 
values of u. However, estimates may be used to find approximate results for low values 
(u < 0.1); and the Log Log scales of the slide rule may be used for obtaining high values 
(u > 3.0) of the hyperbolic functions. To do this the following estimates may be used:   
 When u < 0.1; Sinh u = u, and Tanh u = u, and Cosh u = 1.0.   
 When u > 3.0; Sinh u = (eu)/2, and Tanh u = 1.0, and Cosh u = Sinh u.  
Here is an example for Sinh u, where u = 6.0. For this we will use the C and LL3 scales 
with the slide in its usual position. On scale C put hairline on 6.0. Read 403.0 on the LL3 
scale. Then divide by 2. So Sinh 6.0 = 201.5 (The actual value from the tables is Sinh 6.0 
= 201.7132, and Cosh 6.0 = 201.7156). Then Tanh 6.0 = (Sinh 6.0/Cosh 6.0) ≈ 1.0.  
 If you have a slide rule with hyperbolic scales and want to practice, you can the use 
the following table to check your calculations. It will give you an idea as to where the 
decimal points are to be placed when doing actual problems (See previous pages for steps 
to calculate the Cosh on the K&E 4083, Hemmi No.153, and Pickett & Eckel Model 4). 
 

Short Table of Hyperbolic Functions 
u Sinh u Cosh u Tanh u Csch u Sech u Coth u 

0.2 0.2013 1.0201 0.1974 4.9668 0.9803 5.0665 

0.4 0.4108 1.0811 0.3799 2.4346 0.9250 2.6319 

0.8 0.8881 1.3374 0.6640 1.1260 0.7477 1.5059 

1.4 1.9043 2.1509 0.8854 0.5251 0.4649 1.1295 

2.4 5.4662 5.5569 0.9837 0.1829 0.1800 1.0166 

2.8 8.1919 8.2527 0.9926 0.1221 0.1212 1.0074 

3.0 10.0179 10.0677 0.9951 0.0998 0.0993 1.0050 

6.0 201.713 201.716 1.0000 0.0050 0.0050 1.0000 

 
 
The Slide Rule and Hyperbolic Functions of Complex Numbers 
In this section we will show the significant impact the introduction of the K&E 4093 

slide rule with hyperbolic scales had on problems involving complex numbers. 
Weinbach’s design that K&E used was an important milestone in slide rule history. This 
was for the reason that Weinbach was able with his rule to combine the movement of the 
hyperbolic scales with that of the decimally divided trig scales in order to solve complex 
hyperbolic functions. With his rule, values of complex hyperbolic expressions such as 
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sinh (u + j θ)  = A /α  , in the Polar form ; or, sinh (u + j θ) = (x + j y), in the Cartesian 
form could now be quickly obtained. Compared with the then current hand calculation 
routine by logarithms this breakthrough was a most valuable and timesaving tool as we 
will see in the following discussion. But first, without getting too deep in the 
mathematics, we will give a short explanation of what Weinbach was facing in designing 
a slide rule to solve these problems. 
A typical complex hyperbolic number problem would involve either the calculation of 

A /α  in the Polar form, or, the calculation of the values of x and y in the Cartesian form.  
For example, the formulas for solving sinh (u + j θ) =  A /α  , in the Polar  notation, are;    

A = √ (sinh² u + sin² θ), or A = ( sinh u · cos θ / cos α );  and   
α = tan-1 (cosh u · sin θ /sinh u · cos θ); or  α = tan-1 ( tan θ / tanh u).   

If instead one wished to solve for the Cartesian values of x and y the following formulas 
would be used:  

sinh (u + j θ) = ( x + j y) =[ ( sinh u · cos θ)  +  j  (cosh u · sin  θ) ]. 
Similar looking Polar and Cartesian formulas exist for solving the other complex 

hyperbolic functions, i.e., cosh (u + j θ), tanh (u + jθ), and the reciprocal functions 
cosech (u + j θ), sech (u + j θ) , and  coth (u + j θ).      
Now the challenge Weinbach had was to design a slide rule that would handle all of 

these various and complicated calculations – including those for all six of the complex 
hyperbolic functions. Notice that the solution shown for each equation above involves 
one, or more, of the trigonometric functions combined with hyperbolic functions - and, 
might include other arithmetic operations as well. This means there must always be 
trigonometric scales working along with the hyperbolic scales on the slide rule in order to 
solve these complex hyperbolic expressions. Weinbach was able to devise his slide rule 
so that these different sets of scales would provide the needed solutions. This was a 
significant achievement.  
In the days before Weinbach’s slide rule these formulas involved formidable 

calculations. To solve these equations one had to consult published mathematical tables. 
Then look up the hyperbolic functions in one set of tables and the circular functions in 
another. (Remember, the hyperbolic functions were looked in the tables in radians, but 
the circular functions had to be in degrees before table look up. One or the other, u or θ,      
had to be converted to degrees or radians before using the tables). Complicating the 
calculations was the fact that these look ups were almost always required to be in log 
tables – and often interpolations within the tables were encountered that added to the 
difficulty of the work. Log tables were used for these calculations because of the 
multiplication and division operations in the formulas. Anyone who has worked with logs 
and anti-logs knows they often are confusing to use. Calculations are time consuming and 
one has to very careful not to make mistakes. However, there was little alternative at the 
time, for without log tables to use the calculations would have had to be done by hand 
using long multiplication and long division.   
After 1914 the work may, or may not, have been simplified if one had a copy of the 

“Tables of Complex Hyperbolic and Circular Functions”, by Kennelly. Using his tables 
one could obtain approximations to the values - and more importantly a means to check 
the results obtained by the long hand calculation process. These were a good tool for the 
engineer to have, but did have limitations. Alfred Still in his book, “Electric Power 
Transmission”, on page 290, said this about the Kennelly tables; “Although tables of 
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complex hyperbolic functions are available, they should preferably be used only by those 
who have a thorough understanding of their mathematical basis and are familiar with 
their use. Moreover, since an enormous number of values would have to be included in 
order to cover all possible combinations of the components u and v in the complex 
expression (u + j v), it is usually necessary to resort to interpolation which is not only 
tedious, but likely to introduce errors when attempted by those who have not thoroughly 
familiarized themselves with the methods by constant use of the tables”.  
In his 1928 article Weinbach agreed with this by saying, “The ‘Kennelly Tables’ give 

the vector values and the equivalent complex numbers of the above mentioned functions 
for values of u in steps of 0.05 and values of θ  in steps of 4.5 deg.  Double interpolations 
are necessary, however, if the values of u and θ  differ from those given in the table”. 
From these two comments we see that most of the time the table look ups would involve 
double interpolations that were not easy to do.  

As we will see, Weinbach’s introduction of his slide rule with hyperbolic scales 
presented a powerful tool for both making and checking these complex hyperbolic 
calculations, and in much less time. To show the power of his slide rule we will first 
show a calculation of sinh (u + j θ) = A /α  by the hand calculation method. Then four 
different slide rule examples will be shown comparing the solution by the long hand 
calculation method with the solutions by slide rule.  
There is little doubt, as we will see, that the introduction by K&E in 1929 of 

Weinbach’s slide rule with hyperbolic scales was a major breakthrough in slide rule 
history. For nineteen years, from 1929 to 1948, K&E had a monopoly as no other 
manufacturer had a similar slide rule with hyperbolic scales in the market. During that 
time the two K&E slide rules became the leading tool for engineers and scientists to solve 
and check calculations involving both hyperbolic and complex hyperbolic functions. It 
should be mentioned that Hemmi from the early 1930’s had two hyperbolic rules. Model 
No. 153 of Gudermannian design, and the 20 inch Model No. 154. However, they really 
were not competitive with the K&E rules as one could not directly or easily solve the 
many problems involving complex hyperbolic functions with them. (The term “directly” 
means solving problems in one continuous set of operations of the slide rule, and not 
having to stop to record a result, or to reset the rule to a different value, between steps).  
After World War II Hemmi introduced their Model No. 255 Duplex Slide Rule. With 

this slide rule one could solve complex hyperbolic functions directly. This was the first 
slide rule that could match the operations of the K&E 4083. However, it and the other 
Hemmi rules only appeared in the U.S. market in very limited numbers so they were 
never a challenge to K&E’s market dominance. In fact, it was not until 1948 that Pickett 
& Eckel, and Dietzgen began to introduce their models with hyperbolic scales in 
sufficient numbers to compete with the K&E 4083 slide rule. Of interest is that the 
Pickett & Eckel Model 4 had the hyperbolic scales on the slide similar to Weinbach’s 
original design in his 1928 paper. The Dietzgen No. 1735 looked so like the K&E 4083 
that many mistakenly thought K&E had manufactured it. 
 

In making our comparisons we will start with an example using the hand 
calculation method, and then move on to the calculations by slide rule.  For the first slide 
rule example we will use the original K&E 4093-3 (1929); for the second we will use the 
Hemmi 153 (1933); for the third we will use the K&E 4083-3 slide rule (1939); and, for 
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the fourth we will use the Pickett Model 4 (1948). I did not intend to limit the examples 
to only these four rules. However, these seemed to be enough different designs for us to 
see the various methods of the slide rule calculations.  
In our examples we will solve sinh (u + j θθθθ) = A /αααα , using sample values for u and θθθθ , 

and these formulas:       
αααα = tan-1 ( tan θ / tanh u); and,  A = ( sinh u · cos θ / cos α ).    

We will pretend that the time period in which we are doing the hand calculation is pre-
1930, before the introduction of Weinbach’s slide rule. Our calculation will be done 
using published log tables that were usually on every engineer’s desk at that time. At 
least on the desks of those doing these types of calculations. For our example we will use 
the following tables to look up the values by hand: For the regular trigonometric 
(circular) functions we will use the Handbook of Chemistry and Physics, 1929; for the 
logs of the trigonometric functions we will use Logarithmic Tables of Numbers and 
Trigonometrical Functions, by Vega, 1856; and, for the logs of the hyperbolic functions 
we will use Hyperbolic Functions (Smithsonian Mathematical Tables), by Becker and 
Van Orstrand, 1909).  
Following is our hand example, showing the look up sources used, and the steps 

involved in the calculation of sinh (u + j θθθθ) = A /αααα , where  u = 0.243 and θθθθ = 53° 30’: 

For αααα =  tan 
-1
 ( tan θθθθ / tanh u)  Look up Source Log Value  

Step 1. log tan θ = Vega p 509   0.1307911  

Step 2. log tanh u = B & VO p 24   9.3771700 -10 

Step 3. log tan θ =  ± 10 Step 1 ± 10 10.1307911 -10 

Step 4.  log tan θ - log tanh u  = Step 3 – Step 2   0.7536211 0 

Step 5.  anti-log (tan θ / tanh u ) = Vega p 99   5.67045  

Step 6a. αααα =  tan -1(Step 5) HB of C&P- P103 79° 59.9’  

Step 6b. αααα =    (from Step 6a. to decimal ° ) 79.99833 ° 

      

For A =  ( sinh u ⋅ ⋅ ⋅ ⋅ cos θθθθ ) / cos αααα    

Step 7. log sinh u = B & VO p 24   9.3898700 -10 

Step 8. log cos θ = Vega p 509   9.7743876 -10 

Step 9.  log sinh u + log cos θ = Step 7 + Step 8 19.1642576 -20 

Step 10.  - 10 Step 9 - 10   9.1642576 -10 

Step 11. log cos α α α α = ( α α α α is from Step 6 ) Vega p 350   9.2397000 -10 

Step 12. log A = log sinh u + log cos θ - log cos α = Steps 10 – 11   -0.0754424 0 

Step 13. log A = ± 10  ( from Step 12 )   9.9245576 -10 

Step 14. A = (anti-log of log A from Step 13) Vega p 154 0.84054  

 
So, the solution of  sinh(u + j θθθθ) =A/αααα is; sinh (0.243 + j 53°°°° 30′′′′) = 0.84054 / 79.99833°°°°   

If you actually do these steps by looking up the values in the tables you will very 
quickly see that this hand calculation method is not simple or easy. It is really quite 
laborious. Remember that back then all calculations were recorded by hand using pencil 
and paper. Starting with the books of tables in front of me, and a pencil and pad of paper, 
it took 27 minutes for me to complete this hand calculation – and recheck the work.  I 
would be interested to hear from readers as to how long it took them to complete this 
same example using published tables. 
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Slide Rule Example No. 1 using the Log Log Vector, K&E 4093: 

Below is the example using the K&E 4093 slide rule to solve sinh (0.243 + j 53° 30′) for 
A /α. First we will convert 53° 30′ to decimal degrees of 53.5º. (Note: to save space we 
will use the symbol ↨ to denote the use of the hairline on the cursor). 
For the direct solution of  αααα  the steps are :  

(1). With the scales aligned set ↨ to 53.5º on scale TI  black;  
(2). Move right index on scale SI1 to 0.243 on the Th scale;  
(3). Under ↨ on scale TI  black read 80º. So, αααα = 80º. 

For the direct solution of  A the steps are :  
(4). With the scales aligned set ↨ to 0.243 on Sh1;  
(5). Move slide so that 53.5º on scale Sl2 black is under the ↨;  
(6). Move ↨ to 80º on scale Sl2;  
(7). Read value of 0.84 under ↨ on scale D; So, A = 0.84 

And, the solution by the K&E 4093 slide rule is:    
sinh (0.243 + j 53.5º) =  0.84 / 80º 

Starting with the K&E Log Log Vector instruction manual to guide me, and a pencil and 
pad of paper, it took 4 1/2 minutes for me to complete this slide rule calculation.    
 

Slide Rule Example 2 using the Hemmi 153: 
For the second example using the slide rule we will use the Hemmi 153 introduced in 
1933. Although you cannot read results directly as with the K&E 4093-3 we can still 
solve sinh (0.243 + j 53° 30′) for A /α. We do this by first obtaining the values for cos θ,  
tan θ, sinh u, and  tanh u. Then we will use these separate values to solve the equations: 

αααα = tan-1 ( tan θ / tanh u); and,  A = ( sinh u · cos θ / cos α ) 
For αααα  the steps are :  
(1) for tan 53.5º ; set ↨ to 53.5 on θ,  and read 1.35 on T other side under ↨; 
(2) for tanh 0.243; set ↨ to 0.243 on Gθ , and read 0.24 on P other side under ↨; 
(3) for α ;  set ↨ to 1.35 on D and move 0.24 on C under ↨, under right index of C 

read 5.63 on D; 
(4) for α ;  then set ↨ to 5.63 on T, read 80.0º on θ  other side under ↨. So, αααα = 80º   
For A the steps are :  
(7)  for sinh 0.243; set ↨ to 0.243 on Gθ , and read 0.245 on T under ↨; 
(8)  for cos θ 53.5º; set ↨ to  36.5 (90.0 – 53.5) on θ, and read 0.594 on P under ↨; 
(9)  for cos 80.0º; set ↨ to  10.0 (90.0 – 80.0) on θ, and read 0.174 on P under ↨; 
(10) for A; set ↨ to 0.245 on D and move 0.174 on C under ↨, move ↨ to 0.594 on 
C and read 0.84 on D under ↨; So, A = 0.84 

And, the solution by the Hemmi 153 slide rule is: sinh (0.243 + j 53.5º) =  0.84 / 80º . 
It took 6 minutes for me to complete this slide rule calculation. 
 

Slide Rule  Example No. 3 using the K&E 4083: 
We will now show the solution steps using the K&E 4083 slide rule, introduced in 1939, 
to solve sinh (0.243 + j 53° 30′) for A /α.   
For the direct solution of  αααα the steps are :  

(1). set ↨ to right index on D and move 53.5º on T (red) under the ↨; 
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(2). move ↨ to 0.243 on Th, and under ↨ read 80.0º on scale T (red); so, αααα = 80º    
For the direct solution of A the steps are :  

(3). set ↨ to 0.243 on Sh1; 
(4). set 80.0º on scale S (red) under the ↨; 
(5). move ↨ to 53.5º on scale S (red); 
(6). read value of 0.84 under ↨ on D. So, A = 0.84 

And, the solution by the K&E 4083-3 slide rule is:   sinh (0.243 + j 53.5º) =  0.84 / 80º 
It took 3 minutes for me to complete this slide rule calculation. Notice how much easier 
and faster the steps have become using the K&E 4083 slide rule vs. those used for the 
K&E 4093. 

We solved for the complex Vector form A /α  when doing the above example. This 
form is more often preferred as it is particularly useful for multiplying and dividing these 
complex hyperbolic numbers. As another example we will now show a solution for x and 
y using the Cartesian form. Here we will solve sinh (0.243 + j 53.5º ) = (x + j⋅ y). The 
formulas for solving for x and y are:  x = (sinh u · cos θ);  y =  (cosh u · sin θ); 
The solution of these equations for x and y by the long hand method using logarithms is: 
x = 0.14597 and y = 0.82771. To save space we will not show the steps here of the detail 
listing of these hand calculations using logarithms. I did do them by looking up the logs 
in the published tables and it took me 18 minutes to solve for these by hand using pencil 
and paper. Using the K&E 4083-3 slide rule we will proceed as follows:  
For the direct solution of x the steps are :  

(1). set ↨ to 0.243 on Sh1;  
(2). set right index on S to ↨ ; 
(3). move ↨ to 53.5º on scale S (red);  
(4). read x = 0.146 under ↨ on D  

For the direct solution of y the steps are :  
(5). set left index of C to 0.243 on Th; 
(6). move ↨ to 0.243 on Sh1; 
(7). turn rule over read 1.03 on C scale under ↨; 
(8). turn rule back over and set left index of S to 1.03 on D; 
(9). move ↨ to 53.5 on S black; 
(10). read y = 0.828 under ↨on D 

And so, sinh (0.243 + j 53.5º) =  ( 0.146 + j ⋅⋅⋅⋅ 0.828 ) 
These slide rule calculations for x and y took 4 minutes for me to complete. 

 
Slide Rule Example 4 using the Pickett & Eckel Model 4: 

For our fourth example, to solve sinh (0.243 + j 53° 30′) for A /α , we will use the Pickett 
& Eckel Model 4 slide rule introduced in 1948. This slide rule is a different design as it 
has the hyperbolic scales on the slide and not the body. 

For the direct solution of αααα the steps are :  
 (1). with the C and D scales aligned set ↨ to 53.5º on T; 
 (2). turn rule over and move slide left until 0.243 on Th is under the ↨ ; 
 (3). move ↨ to right C index;  
 (4). turn rule over, align C and D together and read 80.0º on T; so, αααα = 80º  

For the direct solution of A the steps are :  
 (5). with the C and D scales aligned set ↨ to 0.243 on Sh 
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 (6). move slide until 80.0º on S (red) is under the ↨; 
( 7).  move ↨ to 53.5º on S (red) and read 0.84 on D; So, A = 0.84 

And, the solution by the Pickett & Eckel Model 4 slide rule is:    
sinh (0.243 + j 53.5º) =  0.84 / 80º 

These slide rule calculations took 3.5 minutes for me to complete. 

It is very obvious from these four examples that using any one of these slide rules is 
much easier and faster than trying to calculate sinh (u +jθ) = A /α , or = ( x + j y), by 
hand calculations using values from published tables. Of real importance is the fact that it 
does not take very many sample calculations with the slide rule to find that one masters 
the solution steps quite readily. One can imagine how happy those working with 
hyperbolic complex functions were to see these rules. They freed them from many time 
consuming log table look up routines.  
There was another clear advantage. This occurred when more accuracy (more decimal 

places) was desired than could be obtained by using the slide rule. Then the published 
tables would have been used, instead of the slide rule. However, after completing the 
long hand calculations made by using the tables the slide rule could then be used to 
quickly check the answers. In this way it proved to be a valuable checking tool to have, 
for often one would find that the lengthy log calculations done by hand were prone to 
error. 

Again, I feel there is the need to say something about the instructions given in the 
various manufacturers’ manuals. They were a real disappointment to me. Unfortunately, I 
found the instructions for solving complex hyperbolic functions in the manuals of most of 
the well known slide rules to be difficult and confusing to understand. The best 
instructions I have found are in the Dietzgen Model 1725 and 1735 manuals (Either 
manual may be used as they are almost identical). These were much better and easier for 
me to follow than those in the K&E, Hemmi, Pickett & Eckel, and the European 
manufacturers’ manuals.  
 
Why are Slide Rules with Hyperbolic Function Scales called Vector Slide Rules? 
 In December 2002, Marion Moon, asked the ISRG members “what vendors had 
in mind when they used "vector" to name a slide rule?” Maybe the following comments 
will help answer that question.  
 Mike Konshak has an extensive and wonderful web site by the name of the 
“International Slide Rule Museum”: http://www.sliderulemuseum.com/. He is a well 
known slide rule authority.  On his site is a section titled “Slide Rule Terms, Glossary and 
Encyclopedia”. If one looks up “Vector Slide Rule” on this list its definition is: “Vector 
Slide Rule - A slide rule with hyperbolic functions  Sh, Th, etc”. This seems to be the accepted 
universal definition as one finds it repeated elsewhere in the slide rule literature.  

However, it seems an odd choice of a description as every engineer, 
mathematician, and scientist who has worked with a slide rule knows you do not need 
hyperbolic scales to make vector calculations. In fact all you need are the S and T scales 
along with the C and D scales. Vectors are points in space and can be expressed in the 
Polar or Cartesian coordinate systems. The Polar system determines the point by an 
angle and distance. Whereas the Cartesian system determines the point by its x and y 
coordinates.  
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However, the use of the term “Vector” for these slide rules does not come from 
this well known source. Instead, it comes from a different meaning that is commonly 
used by Electrical Engineers. Many of the important formulas the Electrical Engineer 
encounters involve vectors expressed as complex numbers. So, the meaning they use 
refers to these vector calculations involving complex numbers, and not the simple vectors 
I have been describing above.  

John Manson explained this in an email to me.  He said that Steinmetz (1865-
1923) called the exponential form of a complex number a “vector”. (Steinmetz was one 
of the foremost Electrical Engineers of his time). Steinmetz felt the exponential form, in 
the Polar notation, A /α  , was the most simple and best way to deal with multiplication 
and division calculations of complex numbers.  

There are other references to the use of this definition of “vector” by EE’s. Such 
as Puchstein’s May 12, 1921 Patent application that was titled ”Device For Making 
Vector Calculations”. And, Weinbach refers to the “Vector Slide Rule” in his 1928 
article. The name "Log Log Vector Slide Rule" is what he later recommended to K&E 
that they use for the K&E 4093. There is no question, when reading Puchstein’s and 
Weinbach’s comments that they are referring to the EE definition of “vectors” that 
specifically involve complex number calculations.  

We also find this EE usage in the Pickett and Dietzgen manuals. Hartung  in the 
Pickett manual uses the expression "...by ordinary vector methods..." in telling the user 
how to convert a complex component hyperbolic sinh, etc. to polar form. The Dietzgen 
N1725 manual uses the phrase "...the complex number can be converted to polar form in 
the usual manner" to describe the use of the vector form of conversion. The manual of the 
Hemmi 153 slide rule says, “It calculates the complicated complex numbers, vector 
functions, circuit calculations, &c, &c, with ease and rapidity". 
 The combination of hyperbolic scales with the decimally divided trigonometric 
scales on Weinbach’s slide rule design allowed Engineers to expand their work into the 
complex number domain. For the first time calculations could be made directly for 
hyperbolic complex functions in both the Polar and Cartesian forms. This is why the 
introduction of a slide rule with hyperbolic scales in 1929 excited many Engineers - who 
up to that time had been making these extended type of hyperbolic complex number 
calculations by hand using published tables. 
 I guess we have answered Marion’s question raised at the beginning of this 
section: “What vendors had in mind when they used "vector" to name a slide rule?” 
However, we have not answered the real mystery. Where did this definition of a “Vector” 
slide rule originate? This description did not come, it seems, from Puchstein’s 1921 
Patent application. Nor, from Weinbach in his 1928 writings. Maybe these two sowed the 
seed - but who was it to first write the above definition of a Vector Slide Rule “as a slide 
rule with hyperbolic function scales”? 
 
What are Some of the Rarest Hyperbolic Slide Rules? 
 In the following list are my personal ideas of what I think are some of the rarest of 
the slide rules with hyperbolic scales. The main source used for compiling this is the 
eBay auctions in the USA. My introduction to eBay started in 1999, and literally 
thousands of slide rules of all types and descriptions have appeared in the auctions since 
then. During this time I have followed the listings quite closely. So, these rare slide rules 
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are those that never have, or almost never have, appeared in these auctions.  They are not 
picked because they are the most expensive, but because they are seldom seen and seem 
to exist in very small numbers. Slide rules such as the Aristo HyperLog 0972, and the F-
C Mathemas 2/84 and 2/84N, appear on eBay often enough that I have purposely left 
them off the list. They are expensive to buy, but not really as rare as those listed.  

I am sure many Readers will take exceptions as to what is shown, and even have 
strong opinions about other hyperbolic function slide rules that they think should be on 
the list.  I really would like to hear from these Readers as to their other choices; and, 
maybe add these names to this list. In the interim here are my picks for the rare ones: 

First are the 10 inch or 25 cm. ones:  
Beacon (Korea) No. 315 
Archimedes (Brazil) No. 21-D Vectolog 
Eckel (USA) Engineer’s Log Log (Circular Slide Rule) 
Flying Fish (China) No. 6006 
Graphoplex (France) Neperlog Hyperbolic No. 691a 
Lutz 300 B (Japan/ USA) 
Nikkei (Japan) 520 Duplex 
Patrick (USA) Mark IV data log 
Pickett & Eckel (USA) Model X-4 Executive 
Relay (Japan) No. De 1008 
Ricoh (Japan) No. 159 
U.S. Blueprint (USA/Hemmi) No. 1893 
Next are the 20 inch or 50 cm. ones: 
Hemmi (Japan) Duplex Slide Rule No. 154  
Hemmi (Japan) Duplex Slide Rule No. 275 Versions 1& 2  
Hemmi (Japan) Duplex Slide Rule No. 275D  
Post (USA/Hemmi) No. 1460  

 
About the list of Slide Rules with Hyperbolic Scales 
 A separate listing, on this web site, shows the various hyperbolic slide rules that are 
known exist at the date of this writing. To see the list click on “Back” in the upper left 
hand corner of this page and the click on the List on the upper left corner of the web site 
introduction page. The list is alphabetically by manufacturer and gives a number of 
details about each of the hyperbolic slide rules they produced. This list begins in 1929 
with the K&E 4093 and ends somewhere in the late 1970’s, or early 1980’s. The exact 
ending date of production and who the last manufacturer was will probably never be 
known.  
 My original listing of known hyperbolic slide rules was completed in March 2005. 
Since that time new additions to the list have been found. The updated current list shows 
an increase to 38 manufacturers and 128 slide rules. It was found that some of these 
manufacturers, particularly the Chinese, produced the same slide rule with similar model 
numbers, but used different names. So, if we eliminate these kinds of duplicates, I 
estimate we end up with somewhere around 30 different Companies – and probably about 
100 different hyperbolic slide rules. These numbers, I’m afraid, are not too exact. It was 
just not possible, with the information available to date, to sort out all of the Chinese slide 
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rules and the maker’s names. And, we know these numbers are going to change in the 
future as new slide rules are reported.  
 On my original March 2005 list the slide rules were numbered from 1 through 109. 
The list is alphabetical by manufacturer. When revising the list I did not want to change 
the numbers each time a new slide rule was discovered and added somewhere on the list. 
So, when new rules were added they were inserted in place on the list under the 
manufacturer’s name. The nearest old number was kept, but letter designations such as 
“a”, “b”, “c”, etc. were added after the old number. This way each slide rule on the list 
can always be identified by its own assigned number and a letter designation where such 
has been added. 
 For each hyperbolic slide rule on the listing, four major items are shown: These are: 
(1) name and number; (2) arrangement of the scales on the rule; (3) gauge marks on the 
scales, if any; and (4) gauge marks on the cursor, if any. Not all slide rules have gauge 
marks on the scales and/or cursor. But these features are included in the listing because 
gauge marks add significant expanded calculating power to a slide rule.  
 These four items are the only variables that separate the slide rules included in the 
listing. So, there was no attempt, when all of the scales and gauge marks were the same, 
to include the variants of differences in a logo design, or name location, or cursor styles, 
etc.  
 This current list is a continuous working draft of what I hope in time will become a 
fairly thorough and accurate record of slide rules with hyperbolic scales. To complete it, I 
am asking for help from the International Slide Rule Group (ISRG) members, the 
Oughtred Society (OS) members, and other slide rule lovers to fill in the missing pieces.  
First, please look at the list for errors, and let me know what changes should be made. 
Second, let me know the name and details for any slide rule that has been omitted and 
should be added. I will be most happy to acknowledge the contributions that anyone 
makes to improve the listing. All errors in the list are mine alone. 
  The final goal is to include every known slide rule with hyperbolic scales for each 
manufacturer. In listing the rules that have the same name and number I’m looking for 
variations of the placements of the hyperbolic scales or other scales on the rule. Also, I’m 
trying to include variations in the gauge marks on the scales, and the marks on the cursor.  
  I have tried to include only actual details which have been verified. Where details 
are not complete the list is noted. If you see corrections to be made or feel something else 
should be added to a slide rule’s description, please let me know. Front Scales denote the 
side of the slide rule that shows its name or number. This is not necessarily the side 
containing the hyperbolic scales. Red color denotes scales that are red color on the slide 
rule. Where red is missing in some of the listings it is because I do not own the rule or do 
not have a picture that shows the color of the scales. For some rules I do not have pictures 
that show all of the gauge marks on the scales and cursor. Please see where this is 
mentioned as I’m looking for help to add these marks. Also, far into the future, I am 
hoping to add the front and back pictures for all of the rules I own. I welcome all pictures 
of the rules that readers may send to me. 
 I wish to acknowledge the contributions made by Michael O’Leary, Pierre Vander 
Meulen, Richard Smith Hughes, John Fahey - and many others not mentioned here. 
Michael sent me emails with large size pictures of the variations of both K&E and Pickett 
rules that he had.  Pierre did the same for many of the different Chinese slide rules that he 
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had purchased when he worked in China. Richard helped me further with the listing and 
details of many additional Chinese slide rules. John mailed me pictures of the Eckel 
circular slide rule.  
 These, and many other sources, were all important to recording an accurate listing 
for these rules. At the end of the listing all of the sources of information are shown in 
order to give each person who helped the proper credit. In the listing these sources are 
identified by initials at the far right for each rule. Refer to the footnotes at the end of the 
list for further historical details on some of the manufacturers and rules. 

If you furnish additional information or corrections would you please give your 
source? Also, if you can send scanned pictures and/or a copy of the manual for these it 
would be most appreciated. Thanks for any help you may give. 
Best regards, Bill Robinson          (Email:   wrobinson62@cox.net  ) 
Text of 6/9/2008 
 


